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Discrete wavelet transform was used to eliminate the noise in the charge-coupled device near-infrared
(CCD-NIR) spectra of apple. The influence of three parameters (wavelet function, decomposition
level, and threshold) on the predictive ability of the calibration model was investigated. The result
showed that the db, sym, and bior wavelet families performed well, while the coif, dmey, and haar
wavelets were not able to denoise effectively. The best decomposition level was 2. The threshold
selection rules of the default, Birge-Massart, and Penalty had good denoising results, while SURE,
Sqtwolog, Heuristic SURE, and Minimax set all detailed coefficients to zero due to their high threshold
values. The best denoising result was obtained with the combination of the bior3.3 wavelet function,
two levels of decomposition, default threshold selection rule, and the soft thresholding method. The
optimal model of soluble solids content was constructed. The relative standard deviation of prediction
decreased from 7.79 to 5.82% after wavelet denoising.
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INTRODUCTION

The nondestructive detection of the inner quality of fruit is
of great importance for grading and quality evaluation. The near-
infrared (NIR) reflectance spectroscopy technique has a short
measuring time with limited sample preparation and is widely
used in agricultural product detection and analysis (1, 2). Many
parameters of apple can be measured with NIR spectroscopy,
such as soluble solids content (SSC), total sugar content,
titratable acidity, firmness, and the contents of glucose and
fructose (3-6). However, the intensity of NIR reflectance
spectroscopy is usually 1-2 orders of magnitude lower than
that of midinfrared (MNR), resulting in its larger background
than that of MNR. Therefore, the improvement of signal-to-
noise ratio (SNR) is crucial for NIR analysis with high analytical
precision. To improve the robustness of the calibration model,
different preprocessing methods have been used to eliminate
the background and noise (7). The charge-coupled device near-
infrared spectroscopy (CCD-NIR) spectrometer has a rapid scan
speed, so it could be used for on-line detection and real-time
grading of fruit. As compared with the spectrum collected from
a Fourier transform near-infrared (FT-NIR) spectrometer, the
spectrum from CCD spectrometer has higher noise. Therefore,
denoising seems to be very important when CCD-NIR spectra
are used to construct a calibration model.

Since it was developed in 1980s, the wavelet transform (WT)
(8) has been used as a time frequency domain analytical method

in many fields due to its noise elimination. Stark et al. (9) first
used the WT for IR spectroscopy. With the aid of WT, they
separated the mineralogical information in the Fourier transform
infrared (FT-IR) absorbance spectrum from noise and other
signals such as absorbance from water and organics. Ming et
al. (10) reported that the relative root-mean-square deviation
of the prediction set decreased from 9.2 to 7.4% when WT was
used to filter the NIR spectra of tobacco. Chen et al. (11) and
Fu et al. (12) found that wavelet denoising could improve the
NIR predicting precision of the oil content in instant noodles
and the sugar content in vinegar. Depczynski’s group (13) found
that the boundary effect occurred when the WT was used to
analyze finitely supported signals and suggested mitigating it
by applying Strum-Liouville wavelets. Zhu et al. (14) used a
new WT denoising method to eliminate the noise in the NIR
spectrum of wheat based on the difference in wavelet modulus
of the maximum evolution behavior between a singular signal
and random noise in a multiscale space. Shao and Zhuang (15)
applied the continuous wavelet transform (CWT) to eliminate
the background of NIR spectra. They concluded that WT
achieved higher precision than S-G smoothing and derivatives,
and the discrete wavelet transform (DWT) was slightly better
than CWT. All of these results suggest that WT efficiently
eliminates the background noise from NIR spectroscopy.

Factors of the wavelet function, decomposition level, and
threshold strongly influenced the denoising result. Cao et al.
(16) discussed the influence of these three factors when DWT
denoising was used to process capillary electrophoresis-
eletrochemiluminescence signals. However, the noise charac-
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teristics vary with signals. An optimal wavelet function for a
given signal is not necessarily the best for others (17). Therefore,
it is very important to study the influence in general of these
three wavelet denoising parameters on the robustness of the
calibration model when wavelet denoising is used to preprocess
the CCD-NIR spectra. Ying et al. (18, 19) used wavelet
denoising for detecting the sugar content of apple by the FT-
NIR spectroscopy and discussed the performance of the db2
and db4 wavelets. Liu et al. (20) used DWT to eliminate the
white noise that they added to the FT-NIR spectra and applied
SNR to estimate the denoising effects of the different wavelet
functions and decomposition levels. However, the thresholding
method was not discussed in their study. Furthermore, for a
real spectrum, the measurement condition differs substantially
and it is difficult to calculate the value of SNR. Thus, the
performance of calibration model based on using the denoised
spectra is required to estimate the denoising effect.

In this study, the DWT denoising method based on thresh-
olding was used to eliminate the noise in the CCD-NIR spectra
of apple. Wavelet functions from six wavelet families that have
different orders were used to investigate the influence of wavelet
functions on the denoising result. The influences of decomposi-
tion level and threshold selection rules were discussed. The
optimal combination of denoising parameters was obtained, and
the best calibration model for SSC of apple was constructed.

MATERIALS AND METHODS

Samples.Thirty Fuji apples were purchased from the local fruit
market. Apples with different colors and sizes were chosen to keep
the SSC range as wide as possible. The apples came from orchards in
the Shanxi province of China. Apples were stored at 20°C for 2 days
for later analysis.

Apparatus. The NIR reflectance spectra of apples were measured
with a CCD-NIR spectrometer (AvaSpec-2048, Arantes, The Nether-
lands), which was equipped with a 2048 pixel CCD detector array.
The spectrometer had a spectral range of 580-1100 nm. The integration
time of CCD was set to 8 ms. For each measurement, it was scanned
64 times and the averaged spectrum was the output of the spectrometer.
A BaSO4 cylinder 30 mm in diameter and 5 mm in thickness was used
as a reference.

Spectra Measurement.All of the reflectance spectra of apples were
measured in the lab at room temperature (∼20 °C). The Y-bundle fiber
of the CCD spectrometer was used to measure the apples. The head of
the fiber was put closely against the apple. The light was guided to the
sample by the source fiber. The diffusely reflected light from the sample
was detected by the detector fiber. Each apple was measured on four
evenly distributed equatorial positions that were marked with a circle,
avoiding the obvious disfigurement. In total, 120 spectra were obtained
(30 apples times four positions per apple). Because the responses of
the CCD detector in the ranges of 580-730 and 1060-1100 nm were
very low, only the spectral range of 730-1060 nm was selected to
construct the calibration model. Each spectrum had 1324 points.

SSC Measurement.According to the standard for fresh apple
measurements GB10651-89 (21), a refractometer (WAY, Shanghai
Precision & Scientific Instrument Co., Ltd., China) was used to measure
the SSC of apple. The juice was squeezed from a core removed from
the NIR sampling site, and the°Brix was recorded. Thus, 120 SSC
values were obtained (30 apples times four positions per apple).

Outlier Detection. Outliers are data that have a rather large influence
on the regression solution, and the occurrence of such data points can
lead to considerable deviations from normality (22). Therefore, the
outliers must be eliminated. The principal components analysis (PCA)
score plot was applied to eliminate the outlier.Figure 1 showed the
score plot of the first two PCs (PC1 and PC2). Two samples marked
with circles inFigure 1 were identified as outliers and were eliminated.
Similarly, other outliers were eliminated based on the score plots of
PC1-PC3, PC2-PC3, and PC3-PC4. In total, seven outliers were
eliminated. The numbers of the eliminated samples were 30, 37, 52,

56, 69, 104, and 113, respectively. All of these outliers were distributed
in seven different apples. Therefore, the outliers might occur because
of variations in the spectral measurement.

The 113 retained samples were randomly divided into two data
sets: The calibration set contained 80 samples, and the validation set
contained 33 samples. The statistical characteristics of the SSC for two
data sets are summarized inTable 1.

WT Theory and Algorithm. Wavelets are a series of functions that
derived from the basis function (mother wavelet). A wavelet is defined
as:

where a is a scaling variable andb is a translation variable. In
practice, it is assumed thatS ) 2*m, b ) n*b0, (m, n ∈ Z), and the
functionf(t) is a signal; then, the following discrete wavelet is obtained

The DWT can be defined as:

Mallat (23) proposed an efficient algorithm to perform DWT by
assuming that the discrete signalf(t) is {C(n)}, wheren is the signal
number. The Mallat algorithm is as follows.

where{Cj(n)} is the approximate coefficient (low-frequency compo-
nents) of the signal at the decomposition level ofj and{Dj(n)} is the
detailed coefficient (high-frequency components). The original signal
C0 can be reconstructed byCj and D1, D2, ..., Dj. The reconstruction
formula is as follows:

With the increase of decomposition levelj, the more detailed
characteristics of the signal can be observed.

Figure 1. Score plot of the first two PCs of the NIR spectra of the apples.

Table 1. Statistic Values of Calibration and Validation Data Sets of
Applea

sample set nb range mean SDc

calibration 80 8.9−17.8 13.32 1.73
validation 33 10.9−14.9 12.42 1.09

a Unit used, °Brix. b n ) number of samples. c SD, standard deviation.
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Wavelet Denoising Steps.The characteristics of the signal and noise
are considerably different under wavelet decomposition. The power
spectrum of the signal is concentrated, and the absolute value of wavelet
coefficient of the signal is high. However, the power spectrum of noise
is dispersive comparatively and the absolute value of wavelet coefficient
of noise is low. Consequently, the noise in the signal can be suppressed
or eliminated by using threshold to filter the wavelet coefficient whose
absolute value is below the threshold, which is the principle of wavelet
denoising (24). The wavelet denoising on the CCD-NIR spectra is
performed in three steps.

1. WaVelet Decomposition.A wavelet function and a decomposition
level were selected, and DWT was applied to each spectrum. Then,
the approximate coefficients and the detailed coefficients were obtained.
It is noticeable from the definition formula of WT that the result of
WT is closely related to the wavelet function used. Many wavelet
families have been constructed. Some wavelet families contain wavelets
that have different orders. Db, coif, sym, bior, and dmey wavelets have
been proven to be effective in signal processing (25). In addition, the
haar wavelet is the simplest wavelet. Thus, the denoising effects on
the CCD-NIR spectroscopy of these six families of wavelets were
investigated. For a signal with a length ofN, the theoretically maximum
decomposition levelJ is defined as:

J was calculated by the Matlab command of “wmaxlev”. An investiga-
tion was conducted in this study on the denoising effect of different
decomposition levels (1, 2, ...,J).

2. Thresholding.An appropriate threshold value was given before-
hand, and then, the noise component in the signal was eliminated by
processing the detailed coefficients with the soft or hard thresholding
strategy. The definitions of soft and hard thresholding are as follows:

hard thresholding:

soft thresholding:

whereT is the threshold value andx andx* are the wavelet coefficients
before and after thresholding. Normally, the signal processed by soft
thresholding is smoother than that by hard thresholding. Thus, soft
thresholding was selected to process the CCD-NIR spectrum.

Threshold value is a key parameter in wavelet denoising and can be
determined with three kinds of approaches.

a. Estimation of Threshold Based on Original Signal. The threshold
is estimated based on the SNR of original signal. There are three
strategies to estimate this kind of threshold: the default, Birge-Massart,
and Penalty. The default threshold is calculated as:

whereN is the signal length andσ is the standard deviation of the
noise. In the Matlab Toolbox, the three thresholds are calculated by
the commands of “ddencmp”, “wdcbm”, and “wbmpen”, respectively.

b. Estimation of Threshold Based on Sample Estimator. Threshold
is generated by the unbiased risk estimate according to the criterion
that the square deviation between the signal denoised in the worst case
and the original signal is as low as possible. It has four strategies to
calculate this kind of threshold, which are SURE, Sqtwolog, Heuristic
SURE, and Minimax threshold. SURE is a self-adaptive threshold
selection method based on the Stein’s unbiased estimate. The Sqtwolog
threshold can be calculated as:

Heuristic SURE is a mixture of SURE and Sqtwolog. Minimax
threshold is obtained by the construction method of estimator in statistics
to achieve the minimum of the maximum mean square error obtained

for the worst function in a given set. These four thresholds are all
calculated by the command “thselect” in Matlab, and the parameters
of “thselect” are “rigrsure”, “sqtwolog”, “heursure” and “minimaxi”,
respectively.

c. Estimation of Threshold Based on Experience. After a large
amount of study on a specific kind of signal and a comprehensive
analysis of its characteristics, the threshold can be determined by
experience. This method is very practical in engineering practice. In
this study, thresholds are assumed to be very large, and all detailed
coefficients are set to zero in reconstruction. In this study, the influence
of these eight threshold selection methods on the denoising result was
evaluated.

3. Spectrum Reconstruction.The new spectrum was reconstructed
from wavelet coefficients by the WT reconstruction algorithm.

Construction and Validation of the SSC Model. After WT
denoising, the partial least-square regression (PLSR) (26) method was
used to construct the SSC model. The optimal number of factors for
PLSR was determined by the four-block cross-validation method. The
predictive ability of the calibration model was evaluated with parameters
of the relative standard deviation of calibration (RSDc), the relative
standard deviation of prediction (RSDp), and the correlation coefficient
(R) between the measured and the predicted values for the calibration
set. These parameters are defined as:

whereyc is the real SSC of calibration set;yjc is the mean ofyc; ŷc is
the predicted value;ym is the mean ofŷc; m is the number of calibration
sets; P is the number of PLS factors;yp is the real SSC of validation
set;ŷp is the predicted value;yjp is the mean ofyp; andn is the number
of validation set.

In this study, the complete combinations of wavelet denoising
parameters were performed to investigate the influence of three main
parameters. These combinations included six families of wavelets (haar,
db, sym, bior, coif, and dmey) with different orders, different composi-
tion levels, and eight threshold selection rules (default, Birge-Massart,
Penalty, SURE, Sqtwolog, Heuristic SURE, Minimax, and the method
of setting all detailed coefficients to zero). In total, 2056 models were
constructed. The optimal calibration model of SSC of apple was
explored among these 2056 models.

Software.The Wavelet Toolbox 3.0 (The Math Works, Inc., Natick,
MA) was used. PCA and PLS were written in Matlab language. All of
the calculations were carried out on the platform of Matlab 7.0.

RESULTS AND DISCUSSION

Characteristic of Noise in the CCD-NIR Spectrum.Dif-
ferent signals have different kinds of noises. It is necessary to
determine the noise characteristic before denoising. The sym3
wavelet was employed to decompose the 15th spectrum at a
level of four. Figure 2 shows the original spectrum, the
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approximate coefficients of the fourth level, and the detailed
coefficients of the first level. Generally, the signal, noise, and
slow background are distributed in different frequency bands,
namely, noise has a high frequency and is contained in detailed
coefficients of the first level while the slow background is
contained in approximate coefficients of high level. As shown
in Figure 2, the shape of the fourth approximate coefficients
and the original spectra were almost the same; the mean value
of noise was nearly zero, and the intensity of noise increased
with the increase of wavelength.

Influence of Wavelet Functions. Currently, there is no
standard method to select a wavelet function in WT. Some
criteria have been proposed to select a wavelet. One of them
was that the wavelet and signal should have good similarities.
The influence of the different wavelet functions on denoising
effects must be conducted under the same condition. As
discussed, the influence is evaluated with parameters ofR, RSDc,
and RSDp of the SSC calibration model. When a model has a
high value ofRand low RSDc and RSDp, the calibration model
is robust and accurate and the denoising result is significant.
Table 2 showed the denoising results performed by different
wavelet functions in a decomposition level of two and a default
threshold. The calibration model of the original spectra was also
shown in the table. Wavelets of the coif and dmey had poor
predictive results, since the values of RSDp were all higher than
7.79% of the original spectra. The RSDp of the haar wavelet
was almost the same as the original spectra, and itsR value
was even lower. Therefore, the coif, dmey, and haar wavelet
families cannot effectively eliminate the noise of the CCD-NIR
spectrum. For the wavelet families of the db, sym, and bior,
wavelet functions with some orders had good denoising
results. For the bior3.x wavelet, RSDp values were relatively
lower than other wavelets except for the bior3.1 wavelet.
Especially, the bior3.3 wavelet gave the lowest RSDp for the
model and improved the predictive ability of model greatly. The
db2 and sym2 and db3 and sym3 had the same results, but the
db and sym wavelet families with other orders had different
results; this may come from the similarity of the db and sym
wavelets. Except for the dmey and haar that do not have order
parameters, the calibration results for the rest four wavelet
families do not show a clear tendency in varying with orders.

In addition, the factors of the PLS model did not vary with the
wavelet used. After wavelet denoising, the factors of most PLS
models were the same as that of the original model, and only a
few models had a little change (decreased from seven to six).
The wavelet families of the db, sym, and the bior had good
denoising results.

Influence of Decomposition Levels.The value of the largest
decomposition levelJ was calculated by applying the command
“wmaxlev” in Matlab. TheJ value varies with the wavelet
functions. To investigate the influence of decomposition levels,
the db2 wavelet function and Brige-Massart threshold were
employed to perform the WT denoising. The results are shown
in Figure 3. With the increase of decomposition levels, theR
value decreased while the RSDc value increased and the RSDp

Figure 2. Noise characteristic of the CCD-NIR spectrum. Upper, original
spectrum of apple; middle, coefficients of approximation; and bottom,
coefficients of detail.

Table 2. Influence of Wavelet Function on CCD-NIR Spectra

wavelets factors R RSDc (%) RSDp (%)

db2 7 0.9546 4.06 6.45
db3 7 0.9501 4.25 7.05
db4 7 0.9546 4.06 7.87
db5 7 0.9590 3.86 6.89
db6 7 0.9531 4.12 6.89
db7 7 0.9513 4.20 8.22
db8 7 0.9547 4.05 7.64
db9 7 0.9520 4.17 6.71
db10 7 0.9003 5.89 6.94

coif1 7 0.9538 4.09 8.73
coif2 7 0.9525 4.15 8.51
coif3 7 0.9527 4.14 8.44
coif4 7 0.9528 4.13 8.37
coif5 7 0.9529 4.13 8.32

dmey 7 0.9529 4.13 8.08
haar 7 0.9577 3.92 7.74

sym2 7 0.9546 4.06 6.45
sym3 7 0.9501 4.25 7.05
sym4 6 0.9004 5.89 7.32
sym5 7 0.9524 4.17 8.06
sym6 7 0.9529 4.13 6.97
sym7 7 0.9517 4.18 6.82
sym8 7 0.9523 4.16 8.15

Bior1.1 7 0.9577 3.92 7.74
Bior1.3 6 0.8957 6.02 6.53
Bior1.5 7 0.9552 4.03 7.74
Bior2.2 7 0.9570 3.95 9.06
Bior2.4 7 0.9499 4.26 6.87
Bior2.6 7 0.9517 4.18 8.35
Bior2.8 7 0.9520 4.17 6.86
Bior3.1 6 0.9349 4.81 9.30
Bior3.3 6 0.9063 5.63 5.82
Bior3.5 6 0.9107 5.59 7.49
Bior3.7 6 0.9061 5.72 6.09
Bior3.9 6 0.9074 5.68 7.15
Bior4.4 7 0.9507 4.22 6.97
Bior5.5 7 0.9607 3.78 7.11
Bior6.8 7 0.9516 4.18 6.98

original spectra 7 0.9805 2.66 7.79

Figure 3. Influence of the decomposition level on denoising.
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value fluctuated. When the decomposition level reached five,
RSDc was higher than RSDp. As shown inFigure 4, after the
five level decomposition, the reconstructed signal was slightly
distorted, suggesting that part of the useful signal was eliminated
as noise with a higher decomposition level.Figure 3 showed
that the best decomposition level was two.

Influence of Threshold Selection Roles.The db2 wavelet
with a decomposition level of two was employed to all of the
spectra denoising procedures. Eight threshold selection roles
(default, Birge-Massart, Penalty, SURE, Sqtwolog, Heuristic
SURE, Minimax threshold, and the method of setting all detailed
coefficients to zero) with soft thresholding methods were used.
The results are shown inTable 3. The three original signal-
based threshold selection roles (default, Birge-Massart, and
Penalty) had low threshold values. Their calibration models had
highRand low RSDc and RSDp, suggesting that their denoising
results were good. The four sample estimator-based threshold
selection roles (SURE, Sqtwolog, Heuristic SURE, and Mini-
max) had less effective results. Furthermore, the thresholds of
all of these four methods were high, and they had the same
denoising result with the method of setting detailed coefficients
directly to zero. This indicated that the threshold values obtained
by these four methods were so high that all detailed coefficients
were changed to zero after being processed with the soft
thresholding method. Therefore, they had the same result. In
all of these eight threshold selection roles, the default and
Penalty thresholds performed best.

Optimal Calibration Model of SSC. Among all the 2056
models, the combination of the bior3.3 wavelet, decomposition
level of two, and default threshold selection role with the soft
thresholding method gave the best denoising result. The optimal
calibration model of SSC in apple is shown inTable 4. The
results of the S-G smoothing and original spectra are also listed.
The original model had low RSDc and high RSDp. Because the
original spectra had high noise, the calibration model was
overfitted and its predictive ability was bad. After WT denoising,
the RSDp decreased from 7.79 to 5.82%. Thus, the robustness
and predictive ability of the SSC model were improved. As
compared with the S-G smoothing, wavelet denoising gave
lower RSDp. For S-G smoothing, it is difficult to differentiate
the useful signal and the noise component; thus, some useful
information is often removed. WT has excellent ability for
analysis of the small part of the signal, and it has been called
a mathematical microscope (27). Therefore, we could conclude
that DWT denoising was better than S-G smoothing for
processing the CCD-NIR spectra.

LITERATURE CITED

(1) Weyer, L. G. Near infrared spectroscopy of organic substances.
Appl. Spectrosc. ReV.1985,21, 1-43.

(2) Stark, E.; Luchter, K.; Margoshes, M. Near-infrared analysis
(NIRA): A technology for quantitative and qualitative analysis.
Appl. Spectrosc. ReV.1986,22, 335-339.

(3) Lammertyn, J.; Nicolai, B.; Ooms, K.; De Smedt, V.; De
Baerdemaeker, J. Non-destructive measurement of acidity,
soluble solids, and firmness of Jonagold apples using NIR-
spectroscopy.Trans. ASAE1998,41, 1089-1094.

(4) Ventura, M.; Jager, A. D.; Putter, H.; Roelofs, F. P. M. Non-
destructive determination of soluble solids in apple fruit by near
infrared spectroscopy (NIRS).PostharVest Biol. Technol.1998,
14, 21-27.

(5) Quilitzsch, R.; Hoberg, E. Fast determination of apple quality
by spectroscopy in the near infrared.J. Appl. Bot.sAngew. Bot.
2003,77, 172-176.

(6) Liu, Y.; Ying, Y.; Yu, H.; Fu, X. Comparison of the HPLC
method and FT-NIR analysis for quantification of glucose,
fructose, and sucrose in intact apple fruits.J. Agric. Food Chem.
2006,54, 2810-2815.

(7) Delwiche, S. R.; Reeves, J. B., III. The effect of spectral pre-
pretreatments on the partial least squares modeling of agricultural
products.J. Near Infrared Spectrosc.2004,12, 177-182.

(8) Asker, A.; Cetin, A. E.; Rabitz, H. Wavelet transform for analysis
of molecular dynamics.J. Phys. Chem.1996, 100, 19165-19173.

(9) Stark, P. B.; Herron, M. M.; Matteson, A. Empirically minimax
affine mineralogy estimates from fourier transform infrared
spectrometry using a decimated wavelet basis.Appl. Spectrosc.
1993,47, 1820-1829.

(10) Ming, S.; Xie, X.; Zhou, X.; Li, L.; Yan, Y. Noise filter for
near infrared diffusive reflectance spectra by wavelet transform.
Chin. J. Anal. Chem.1998,26, 34-37.

(11) Chen, B.; Fu, X.; Lu, D. Improvement of predicting precision
of oil content in instant noodles by using wavelet transforms to
process near-infrared spectroscopy.J. Food Eng.2002, 53, 373-
376.

Figure 4. Spectrum before and after being denoised by db2 wavelet on
a decomposition level of 5. Upper, original spectrum; bottom, spectrum
after being denoised by WT.

Table 3. Effects of Different Wavelet Thresholding Methods on
Denoising of CCD NIR Spectra

threshold selection
roles

threshold
valuea factors R

RSDc

(%)
RSDp

(%)

default 0.0046 7 0.9546 4.06 6.45
Birge−Massart 0.0030,

0.0015
7 0.9576 3.92 6.65

Penalty 0.0036 7 0.9616 3.74 6.49
SURE 0.1361 7 0.9424 4.56 7.14
Sqtwolog 3.7917 7 0.9424 4.56 7.14
Heuristic SURE 3.7917 7 0.9424 4.56 7.14
Minimax 2.2904 7 0.9424 4.56 7.14
experienced threshold 7 0.9424 4.56 7.14

a The threshold value of the 25th sample that was selected by different
methods.

Table 4. Calibration Model of SSC Obtained by Different
Preprocessing Methods

processing method na R RSDc (%) RSDp (%)

original spectra 7 0.9805 2.66 7.79
S−G smoothing 6 0.9442 4.45 6.52
DWT 6 0.9063 5.63 5.82

a The PLS factors.

Wavelet Denoising in CCD-NIR Spectroscopy J. Agric. Food Chem., Vol. 55, No. 14, 2007 5427



(12) Fu, X.; Yan, G.; Chen, B.; Li, H. Application of wavelet
transforms to improve prediction precision of near infrared
spectra.J. Food Eng.2002,69, 461-466.

(13) Depczynski, U.; Jetter, K.; Molt, K.; Niemoller, A. The fast
wavelet transform on compact intervals as a tool in chemometricss
II. Boundary effects, denoising and compression.Chemom. Intell.
Lab. Syst.1999,49, 151-161.

(14) Zhu, S.; Wang, Y.; Zhang, X. Wavelet denoising theory and its
application in wheat protein concentration with near infrared
spectroscopy analysis.J. Southwest Agric. UniV. (Nat. Sci.)2003,
25, 522-525.

(15) Shao, X.; Zhuang, Y. Determination of chlorogenic acid in plant
samples by using near-infrared spectrum with wavelet transform
preprocessing.Anal. Sci.2004,20, 451-454.

(16) Cao, W.; Chen, X.; Yang, X.; Wang, E. Discrete wavelets
transform for signal denoising in capillary electrophoresis with
electrochemiluminescence detection.Electrophoresis2003,24,
3124-3130.

(17) Pasti, L.; Walczak, B.; Massart, D. L.; Reschiglian, P. Optimiza-
tion of signal denoising in discrete wavelet transform.Chemom.
Intell. Lab. Syst.1999,48, 21-34.

(18) Ying, Y.; Liu, Y.; Fu, X. Sugar content prediction of apple using
near-infrared spectroscopy processed by wavelet transform.
Spectrosc. Spectral Anal.2006,26, 63-66.

(19) Ying, Y.; Liu, Y.; Fu, X.; Lu, H. Effect of wavelet transforms
techniques upon the estimation of sugar content in apple with
near-infrared spectroscopy. InProceedings of SPIE: Nonde-
structiVe Sensing for Food Safety, Quality, and Natural Re-
sources; Chen, Y.-R., Tu, S.-I., Eds.; SPIE: Philadelphia,
Pennsylvania, 2004; Vol. 5587, pp 29-41.

(20) Liu, Y.; Ying, Y.; Lu, H.; Fu, X. Wavelet analysis techniques
applied to removing varying spectroscopic background in
calibration model for paper sugar content. InProceedings of

SPIE: Optical Sensors and Sensing Systems for Nautral
Resources and Food Safety and Quality; Chen, Y.-R., Meyer,
G. E., Tu, S.-I., Eds.; SPIE: Boston, Massachusetts, 2005; Vol.
5996, pp 413-424.

(21) The first editorial office of Standardization Administration of
China. GB10651-89: Fresh apple. InChina Food Industrial
MethodsFruit, Vegetable, and Their Product, 2nd ed.; The
Standardization Administration of China: Beijing, China, 2003;
pp 145-155.

(22) Philips, G. R.; Eyring, E. M. Comparison of conventional and
robust regression in analysis of chemical data.Anal. Chem.1983,
55, 1134-1138.

(23) Mallat, S. G. A theory of multiresolution signal decomposition:
The wavelet transform.IEEE Trans. Pattern Anal. Machine
Intell. 1989,11, 674-693.

(24) Changhong, D. Wavelet analyst in Matlab. InThe Principle and
Application of Matlab Toolbox for WaVelet; National Defense
Industry Press: Beijing, China, 2005; pp 108-116.

(25) Mallat, S. G. Signularity detection and processing with wavelets.
IEEE Trans. Inform. Theory1992,38, 617-643.

(26) Wang, H. Simple partial least-squares regression model.The
Method and Its Application of Partial Least-Squares Regression;
National Defense Industry Press: Beijing, China, 1999; pp 200-
203.

(27) Daubechies, I. Orthonormal bases of compactly supported
wavelets.Commun. Pure Appl. Math.1988,41, 909-996.

Received for review November 21, 2006. Revised manuscript received
April 22, 2007. Accepted April 25, 2007. We acknowledge the financial
support of the Key Technologies Program of the Ministry of Science
and Technology, People’s Republic of China (Project 2001BA501A16B).

JF063363C

5428 J. Agric. Food Chem., Vol. 55, No. 14, 2007 Zhu et al.


